Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

This is the trigonometric form of a complex number where <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow></mstyle></math> is the modulus and <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> is the angle created on the complex plane.

The modulus of a complex number is the distance from the origin on the complex plane.

Substitute the actual values of <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mo>-</mo><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Raising <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to any positive power yields <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.

Since inverse tangent of <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mo>-</mo><mn>3</mn></mrow></mfrac></mstyle></math> produces an angle in the second quadrant, the value of the angle is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Substitute the values of <math><mstyle displaystyle="true"><mi>θ</mi><mo>=</mo><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>z</mi><mo>|</mo></mrow><mo>=</mo><mn>3</mn></mstyle></math> .

Do you know how to Convert to Trigonometric Form 3(cos(pi)+isin(pi))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred sixty-two million two hundred forty thousand two hundred twelve |
---|

- 1662240212 has 64 divisors, whose sum is
**4228899840** - The reverse of 1662240212 is
**2120422661** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 26
- Digital Root 8

Name | one hundred sixty-seven million six hundred ninety-two thousand seven hundred sixty-two |
---|

- 167692762 has 8 divisors, whose sum is
**251608896** - The reverse of 167692762 is
**267296761** - Previous prime number is
**4463**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | one billion seventy-three million seven hundred forty-five thousand four hundred ninety-five |
---|

- 1073745495 has 16 divisors, whose sum is
**1432261440** - The reverse of 1073745495 is
**5945473701** - Previous prime number is
**6101**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9