Add <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> to both sides of the equation.

Divide each term in <math><mstyle displaystyle="true"><mn>16</mn><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mn>25</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mi>sec</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>25</mn></mrow><mrow><mn>16</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>25</mn></msqrt></mrow><mrow><msqrt><mn>16</mn></msqrt></mrow></mfrac></mstyle></math> .

Simplify the numerator.

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set up each of the solutions to solve for <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> .

Take the inverse secant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the secant.

Simplify the right side.

Evaluate <math><mstyle displaystyle="true"><mi>arcsec</mi><mrow><mo>(</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The secant function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the fourth quadrant.

Subtract <math><mstyle displaystyle="true"><mn>36.86989764</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Take the inverse secant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the secant.

Simplify the right side.

Evaluate <math><mstyle displaystyle="true"><mi>arcsec</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mn>143.13010235</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

List all of the solutions.

Consolidate <math><mstyle displaystyle="true"><mn>36.86989764</mn><mo>+</mo><mn>360</mn><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>216.86989764</mn><mo>+</mo><mn>360</mn><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mn>36.86989764</mn><mo>+</mo><mn>180</mn><mi>n</mi></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mn>323.13010235</mn><mo>+</mo><mn>360</mn><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>143.13010235</mn><mo>+</mo><mn>360</mn><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mn>143.13010235</mn><mo>+</mo><mn>180</mn><mi>n</mi></mstyle></math> .

Do you know how to Solve for θ in Degrees 16sec(theta)^2-25=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred sixty-five million one hundred eighty-seven thousand nine hundred forty-three |
---|

- 1565187943 has 4 divisors, whose sum is
**1573558120** - The reverse of 1565187943 is
**3497815651** - Previous prime number is
**187**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 49
- Digital Root 4

Name | one billion four hundred thirty-three million three hundred six thousand six hundred sixty-six |
---|

- 1433306666 has 32 divisors, whose sum is
**2454323328** - The reverse of 1433306666 is
**6666033341** - Previous prime number is
**53**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | one billion five hundred forty-two million two hundred sixty-one thousand two hundred twelve |
---|

- 1542261212 has 16 divisors, whose sum is
**3471027552** - The reverse of 1542261212 is
**2121622451** - Previous prime number is
**3833**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 26
- Digital Root 8