The sum of all the angles in a triangle is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees.

Add <math><mstyle displaystyle="true"><mn>43</mn><mi>°</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>30</mn><mi>°</mi></mstyle></math> .

Move all terms not containing <math><mstyle displaystyle="true"><mi>A</mi></mstyle></math> to the right side of the equation.

Subtract <math><mstyle displaystyle="true"><mn>73</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>73</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.

Substitute the known values into the law of sines to find <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Factor each term.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>30</mn><mi>°</mi><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>107</mn><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0.95630475</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Find the LCD of the terms in the equation.

Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.

The LCM of one and any expression is the expression.

Multiply each term in <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>b</mi></mrow></mfrac><mo>=</mo><mn>0.11953809</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn><mi>b</mi></mstyle></math> to eliminate the fractions.

Multiply each term in <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>b</mi></mrow></mfrac><mo>=</mo><mn>0.11953809</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn><mi>b</mi></mstyle></math> .

Simplify the left side.

Rewrite using the commutative property of multiplication.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>b</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify the right side.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.11953809</mn></mstyle></math> .

Solve the equation.

Rewrite the equation as <math><mstyle displaystyle="true"><mn>0.23907618</mn><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>0.23907618</mn><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.23907618</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>0.23907618</mn><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.23907618</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>0.23907618</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.23907618</mn></mstyle></math> .

The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.

Substitute the known values into the law of sines to find <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Factor each term.

Evaluate <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>43</mn><mi>°</mi><mo>)</mo></mrow></mstyle></math> .

Evaluate <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>107</mn><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0.95630475</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Find the LCD of the terms in the equation.

Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.

The LCM of one and any expression is the expression.

Multiply each term in <math><mstyle displaystyle="true"><mfrac><mrow><mn>0.68199836</mn></mrow><mrow><mi>c</mi></mrow></mfrac><mo>=</mo><mn>0.11953809</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> to eliminate the fractions.

Multiply each term in <math><mstyle displaystyle="true"><mfrac><mrow><mn>0.68199836</mn></mrow><mrow><mi>c</mi></mrow></mfrac><mo>=</mo><mn>0.11953809</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Solve the equation.

Rewrite the equation as <math><mstyle displaystyle="true"><mn>0.11953809</mn><mi>c</mi><mo>=</mo><mn>0.68199836</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>0.11953809</mn><mi>c</mi><mo>=</mo><mn>0.68199836</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.11953809</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>0.11953809</mn><mi>c</mi><mo>=</mo><mn>0.68199836</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.11953809</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>0.11953809</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>0.68199836</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0.11953809</mn></mstyle></math> .

These are the results for all angles and sides for the given triangle.

Do you know how to Solve the Triangle B=30 degrees , C=43 degrees ; and a=8? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred twelve million three hundred twenty-three thousand six hundred ninety-two |
---|

- 812323692 has 16 divisors, whose sum is
**2030809320** - The reverse of 812323692 is
**296323218** - Previous prime number is
**9**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | one billion three hundred forty-eight million nine hundred seventy-eight thousand six hundred forty |
---|

- 1348978640 has 256 divisors, whose sum is
**8543149056** - The reverse of 1348978640 is
**0468798431** - Previous prime number is
**103**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | one billion nine hundred fifty-nine million one hundred twenty-seven thousand six hundred twelve |
---|

- 1959127612 has 16 divisors, whose sum is
**4747117032** - The reverse of 1959127612 is
**2167219591** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7