Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mn>5</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> to the right)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=4sin((8x)/5-pi/2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seven hundred seventy-three million nine hundred fifty-nine thousand two hundred eighty-eight |
---|

- 1773959288 has 32 divisors, whose sum is
**5989691448** - The reverse of 1773959288 is
**8829593771** - Previous prime number is
**2381**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 59
- Digital Root 5

Name | two billion eighteen million eight hundred eighty-three thousand three hundred sixty-three |
---|

- 2018883363 has 8 divisors, whose sum is
**2115871296** - The reverse of 2018883363 is
**3633888102** - Previous prime number is
**2671**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | one billion four hundred fifty-four million seven hundred sixty-one thousand eight hundred forty-one |
---|

- 1454761841 has 8 divisors, whose sum is
**1566969600** - The reverse of 1454761841 is
**1481674541** - Previous prime number is
**13099**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 41
- Digital Root 5