Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Find the period of <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mn>4</mn><mi>x</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Find the period of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The period of addition/subtraction of trig functions is the maximum of the individual periods.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mo>⋅</mo><mn>1</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><mo>⋅</mo><mn>1</mn></mrow><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift y=2sin(4(x-1/2))+3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred eighty-six million nine hundred forty-four thousand nine hundred twenty-eight |
---|

- 786944928 has 512 divisors, whose sum is
**7281135360** - The reverse of 786944928 is
**829449687** - Previous prime number is
**29**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 57
- Digital Root 3

Name | two hundred twenty-three million five hundred seventy-nine thousand seven hundred twenty-five |
---|

- 223579725 has 16 divisors, whose sum is
**429273216** - The reverse of 223579725 is
**527975322** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 42
- Digital Root 6

Name | one hundred eighty-three million one hundred thirty thousand ninety-five |
---|

- 183130095 has 16 divisors, whose sum is
**202524672** - The reverse of 183130095 is
**590031381** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 30
- Digital Root 3