Take the inverse cosecant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosecant.

The exact value of <math><mstyle displaystyle="true"><mi>arccsc</mi><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

The cosecant function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Do you know how to Solve for x in Degrees csc(x)=(2 square root of 3)/3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two hundred ninety-eight million seven hundred eighty-eight thousand six hundred forty-six |
---|

- 298788646 has 32 divisors, whose sum is
**489460608** - The reverse of 298788646 is
**646887892** - Previous prime number is
**173**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 58
- Digital Root 4

Name | one billion seven hundred forty-six million eight hundred eighty-six thousand six hundred ninety-six |
---|

- 1746886696 has 64 divisors, whose sum is
**6042405600** - The reverse of 1746886696 is
**6966886471** - Previous prime number is
**691**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 61
- Digital Root 7

Name | seven hundred ninety-four million nine hundred eighty-four thousand nine hundred twenty-eight |
---|

- 794984928 has 256 divisors, whose sum is
**8472885120** - The reverse of 794984928 is
**829489497** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 60
- Digital Root 6