Subtract <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> from both sides of the equation.

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the third quadrant.

Add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn><mo>-</mo><mn>180</mn><mi>°</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mn>120</mn><mi>°</mi></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn><mo>-</mo><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>60</mn></mstyle></math> to find the positive angle.

Subtract <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for x in Degrees tan(x)+ square root of 3=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred thirty million seven hundred eighty thousand six hundred sixteen |
---|

- 1630780616 has 16 divisors, whose sum is
**5503884606** - The reverse of 1630780616 is
**6160870361** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | two billion one hundred one million five hundred nineteen thousand nine hundred six |
---|

- 2101519906 has 32 divisors, whose sum is
**3405853440** - The reverse of 2101519906 is
**6099151012** - Previous prime number is
**271**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7

Name | one billion three hundred twenty-eight million two hundred sixty-six thousand seven hundred ninety-one |
---|

- 1328266791 has 8 divisors, whose sum is
**1511848800** - The reverse of 1328266791 is
**1976628231** - Previous prime number is
**41**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9