Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>cos</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>6</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> into the numerator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mi>π</mi><mo>⋅</mo><mn>6</mn></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mn>6</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>7</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>6</mn></mrow></mfrac></mstyle></math>

Simplify the expression.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>7</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>6</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=cos((6pix)/7+pi/2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred eighty-five million five hundred seventeen thousand eight hundred twenty-seven |
---|

- 1385517827 has 8 divisors, whose sum is
**1432103280** - The reverse of 1385517827 is
**7287155831** - Previous prime number is
**61**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | one billion six hundred ninety-five million fifty-four thousand eight hundred seventy-six |
---|

- 1695054876 has 16 divisors, whose sum is
**5085164664** - The reverse of 1695054876 is
**6784505961** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 51
- Digital Root 6

Name | seven hundred sixteen million two hundred fifty-three thousand one hundred twenty-three |
---|

- 716253123 has 8 divisors, whose sum is
**956920000** - The reverse of 716253123 is
**321352617** - Previous prime number is
**499**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 30
- Digital Root 3