Rewrite the expression as <math><mstyle displaystyle="true"><mn>3</mn><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><mn>4</mn></mstyle></math> .

Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Find the period of <math><mstyle displaystyle="true"><mn>3</mn><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The period of addition/subtraction of trig functions is the maximum of the individual periods.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>16</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose></mrow><mrow><mn>16</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>16</mn></mrow></mfrac><mo>⋅</mo><mn>3</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>16</mn></mrow></mfrac><mo>⋅</mo><mn>3</mn></mstyle></math>

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift y=4+3sin(pi/3x-pi/16)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred sixty-eight million seven hundred five thousand eight hundred eighty-seven |
---|

- 1868705887 has 4 divisors, whose sum is
**1886170536** - The reverse of 1868705887 is
**7885078681** - Previous prime number is
**107**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 58
- Digital Root 4

Name | two billion forty million two hundred eighteen thousand forty-eight |
---|

- 2040218048 has 512 divisors, whose sum is
**25481174400** - The reverse of 2040218048 is
**8408120402** - Previous prime number is
**199**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 29
- Digital Root 2

Name | one hundred sixty-one million six hundred ninety-two thousand eight hundred seventy-two |
---|

- 161692872 has 128 divisors, whose sum is
**798050880** - The reverse of 161692872 is
**278296161** - Previous prime number is
**197**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 42
- Digital Root 6