Use the sum formula for tangent to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas tan(pi+theta)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred twenty-four million nine hundred fifty-nine thousand nine hundred eighty-six |
---|

- 424959986 has 16 divisors, whose sum is
**643943328** - The reverse of 424959986 is
**689959424** - Previous prime number is
**643**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 56
- Digital Root 2

Name | two billion one hundred thirty-three million eight hundred thirty thousand three hundred twenty-seven |
---|

- 2133830327 has 4 divisors, whose sum is
**2259349776** - The reverse of 2133830327 is
**7230383312** - Previous prime number is
**17**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 32
- Digital Root 5

Name | two billion one hundred thirty-eight million four hundred seventy-six thousand five hundred thirty-five |
---|

- 2138476535 has 32 divisors, whose sum is
**2838749760** - The reverse of 2138476535 is
**5356748312** - Previous prime number is
**101**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8