Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>5</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> into the numerator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>2</mn><mi>π</mi></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>7</mn></mrow><mrow><mn>5</mn><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Simplify the expression.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>7</mn></mrow><mrow><mn>5</mn><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=1/4sin((4pix)/7+(2pi)/5)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | five hundred sixty-one million nine hundred seven thousand two hundred seventy-eight |
---|

- 561907278 has 16 divisors, whose sum is
**956439360** - The reverse of 561907278 is
**872709165** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | one billion eight hundred million six hundred eighty-four thousand nine hundred ninety-five |
---|

- 1800684995 has 4 divisors, whose sum is
**2160822000** - The reverse of 1800684995 is
**5994860081** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | nine hundred twenty-eight million one hundred twenty-five thousand sixty |
---|

- 928125060 has 16 divisors, whose sum is
**2227500288** - The reverse of 928125060 is
**060521829** - Previous prime number is
**15**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 33
- Digital Root 6