The cotangent function is negative in the second and fourth quadrants. The cosecant function is positive in the first and second quadrants. The set of solutions for <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> are limited to the second quadrant since that is the only quadrant found in both sets.

Solution is in the second quadrant.

Use the definition of cosecant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.

Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.

Replace the known values in the equation.

Negate <math><mstyle displaystyle="true"><msqrt><msup><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> .

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><msup><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math>

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><mn>16</mn><mo>-</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math>

One to any power is one.

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><mn>16</mn><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>1</mn></msqrt></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><mn>16</mn><mo>-</mo><mn>1</mn></msqrt></mstyle></math>

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><mn>15</mn></msqrt></mstyle></math>

Adjacent <math><mstyle displaystyle="true"><mo>=</mo><mo>-</mo><msqrt><mn>15</mn></msqrt></mstyle></math>

Use the definition of sine to find the value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of cosine to find the value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Move the negative in front of the fraction.

Use the definition of tangent to find the value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Simplify the value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>15</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Use the definition of cotangent to find the value of <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Divide <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>15</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the definition of secant to find the value of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Simplify the value of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><msqrt><mn>15</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>15</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

This is the solution to each trig value.

Do you know how to Find Trig Functions Using Identities csc(theta)=4 , cot(theta)<0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred thirty million nine hundred twenty-nine thousand two hundred one |
---|

- 1330929201 has 8 divisors, whose sum is
**1361572800** - The reverse of 1330929201 is
**1029290331** - Previous prime number is
**119**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 30
- Digital Root 3

Name | nine hundred eighty-nine million five hundred sixteen thousand four hundred twenty |
---|

- 989516420 has 16 divisors, whose sum is
**2671694388** - The reverse of 989516420 is
**024615989** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | three hundred eighty-seven million nine hundred seventy thousand one hundred fifty-two |
---|

- 387970152 has 64 divisors, whose sum is
**1748780064** - The reverse of 387970152 is
**251079783** - Previous prime number is
**613**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 42
- Digital Root 6