Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> in the formula for period.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>π</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><menclose notation="updiagonalstrike"><mn>2</mn></menclose><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mn>3</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn><mo>⋅</mo><mn>3</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math> to the right)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=sin(6pix-(4pi)/3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred forty-seven million seven hundred forty-three thousand four hundred twenty-seven |
---|

- 947743427 has 4 divisors, whose sum is
**997624680** - The reverse of 947743427 is
**724347749** - Previous prime number is
**19**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | seven hundred ninety million ninety-nine thousand two hundred fifty-six |
---|

- 790099256 has 16 divisors, whose sum is
**2666585016** - The reverse of 790099256 is
**652990097** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | two billion sixty-two million eight hundred ninety-three thousand five hundred twenty-two |
---|

- 2062893522 has 8 divisors, whose sum is
**4125787056** - The reverse of 2062893522 is
**2253982602** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3