To find the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>7</mn></msqrt><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>7</mn></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>7</mn></msqrt><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><msqrt><mn>7</mn></msqrt></mstyle></math>

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>7</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>7</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>7</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Simplify the expression.

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><msqrt><mn>7</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>7</mn></msqrt></mrow><mrow><msqrt><mn>7</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><msqrt><mn>7</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>7</mn></msqrt></mrow><mrow><msqrt><mn>7</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>7</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>7</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>7</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>7</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>7</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Approximate the result.

Do you know how to Find the Secant Given the Point ( square root of 7,3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred three million eight hundred nineteen thousand eight hundred thirty-seven |
---|

- 1903819837 has 8 divisors, whose sum is
**1952104536** - The reverse of 1903819837 is
**7389183091** - Previous prime number is
**157**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 49
- Digital Root 4

Name | one billion six hundred seventy-two million ninety-seven thousand eight hundred twenty-two |
---|

- 1672097822 has 4 divisors, whose sum is
**2508146736** - The reverse of 1672097822 is
**2287902761** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | six hundred eighty-six million eight hundred two thousand four hundred thirty |
---|

- 686802430 has 8 divisors, whose sum is
**1236244392** - The reverse of 686802430 is
**034208686** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1