Replace <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with an equivalent expression <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> using the fundamental identities.

Use the difference formula for sine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>-</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Remove parentheses.

Simplify each term.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas csc(pi/2-x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred forty-eight million five hundred fifty-four thousand forty-seven |
---|

- 1248554047 has 16 divisors, whose sum is
**1411522560** - The reverse of 1248554047 is
**7404558421** - Previous prime number is
**59**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | three hundred seventy-one million six hundred ninety-five thousand nine hundred thirty-seven |
---|

- 371695937 has 4 divisors, whose sum is
**372499200** - The reverse of 371695937 is
**739596173** - Previous prime number is
**463**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | two billion eight million one hundred seventy-six thousand six hundred ninety-eight |
---|

- 2008176698 has 16 divisors, whose sum is
**3292409376** - The reverse of 2008176698 is
**8966718002** - Previous prime number is
**523**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2