Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the tangent.

Evaluate <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><mn>5</mn><mo>)</mo></mrow></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the third quadrant.

Add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>78.69006752</mn><mo>-</mo><mn>180</mn><mi>°</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mn>101.30993247</mn><mi>°</mi></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mn>78.69006752</mn><mo>-</mo><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>78.69006752</mn></mstyle></math> to find the positive angle.

Subtract <math><mstyle displaystyle="true"><mn>78.69006752</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate <math><mstyle displaystyle="true"><mn>101.30993247</mn><mo>+</mo><mn>180</mn><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>101.30993247</mn><mo>+</mo><mn>180</mn><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mn>101.30993247</mn><mo>+</mo><mn>180</mn><mi>n</mi></mstyle></math> .

Do you know how to Solve for θ in Degrees tan(theta)=-5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred eighteen million five hundred ninety-eight thousand eight hundred thirty-four |
---|

- 1618598834 has 4 divisors, whose sum is
**2427898254** - The reverse of 1618598834 is
**4388958161** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 53
- Digital Root 8

Name | six hundred eighty million six hundred forty thousand six hundred ninety-one |
---|

- 680640691 has 8 divisors, whose sum is
**685339200** - The reverse of 680640691 is
**196046086** - Previous prime number is
**389**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | eight hundred sixteen million eight hundred forty-three thousand five hundred ten |
---|

- 816843510 has 32 divisors, whose sum is
**1496309760** - The reverse of 816843510 is
**015348618** - Previous prime number is
**1319**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9