Simplify <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>x</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>x</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> by multiplying each term in the first expression by each term in the second expression.

Simplify terms.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by adding the exponents.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite using the commutative property of multiplication.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite using the commutative property of multiplication.

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by adding the exponents.

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the opposite terms in <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi><mo>+</mo><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> and <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> from <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Since the two sides have been shown to be equivalent, the equation is an identity.

Do you know how to Verify the Identity x^3+y^3=(x+y)(x^2-xy+y^2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eighty-eight million nine hundred fifty-seven thousand forty-eight |
---|

- 1088957048 has 64 divisors, whose sum is
**3777254208** - The reverse of 1088957048 is
**8407598801** - Previous prime number is
**313**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | one billion eight hundred forty-two million seven hundred seventeen thousand eight hundred three |
---|

- 1842717803 has 4 divisors, whose sum is
**1842811968** - The reverse of 1842717803 is
**3087172481** - Previous prime number is
**66421**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | three hundred three million seven hundred seven thousand ninety-three |
---|

- 303707093 has 8 divisors, whose sum is
**313904640** - The reverse of 303707093 is
**390707303** - Previous prime number is
**839**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 32
- Digital Root 5