Simplify <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>x</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>x</mi><mi>y</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> by multiplying each term in the first expression by each term in the second expression.

Simplify terms.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by adding the exponents.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite using the commutative property of multiplication.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite using the commutative property of multiplication.

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by adding the exponents.

Multiply <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the opposite terms in <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi><mo>+</mo><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> and <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>y</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mi>x</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> from <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>x</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Since the two sides have been shown to be equivalent, the equation is an identity.

Do you know how to Verify the Identity x^3+y^3=(x+y)(x^2-xy+y^2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred twenty-nine million three hundred six thousand three hundred ninety-six |
---|

- 1529306396 has 16 divisors, whose sum is
**3524865120** - The reverse of 1529306396 is
**6936039251** - Previous prime number is
**41**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | one billion two hundred ninety-eight million four hundred seventy-four thousand six hundred fifteen |
---|

- 1298474615 has 4 divisors, whose sum is
**1558169544** - The reverse of 1298474615 is
**5164748921** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | one billion two hundred six million eight hundred fifty-one thousand nine hundred eighty |
---|

- 1206851980 has 32 divisors, whose sum is
**3264552720** - The reverse of 1206851980 is
**0891586021** - Previous prime number is
**541**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 40
- Digital Root 4