Since <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> is an odd function, rewrite <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in terms of sines and cosines.

Since <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> is an even function, rewrite <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Since <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> is an odd function, rewrite <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Separate fractions.

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Expand the Trigonometric Expression cot(-x)cos(-x)+sin(-x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred three million four hundred seventy-six thousand nine hundred forty |
---|

- 1303476940 has 32 divisors, whose sum is
**3520493280** - The reverse of 1303476940 is
**0496743031** - Previous prime number is
**3943**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | one billion four hundred ninety-seven million eight hundred eighty-seven thousand six hundred twenty |
---|

- 1497887620 has 32 divisors, whose sum is
**4046112000** - The reverse of 1497887620 is
**0267887941** - Previous prime number is
**2399**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 52
- Digital Root 7

Name | three hundred thirty-eight million five hundred ninety-one thousand five hundred forty-four |
---|

- 338591544 has 32 divisors, whose sum is
**1523662056** - The reverse of 338591544 is
**445195833** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 42
- Digital Root 6