Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>B</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mn>45</mn></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the third quadrant.

Add <math><mstyle displaystyle="true"><mn>360</mn><mi>°</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>45</mn><mo>-</mo><mn>180</mn><mi>°</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mn>135</mn><mi>°</mi></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mn>45</mn><mo>-</mo><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>45</mn></mstyle></math> to find the positive angle.

Subtract <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for B in Degrees 5tan(B)+7=2tan(B)+4? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two hundred sixty-eight million five hundred forty-five thousand fifty-seven |
---|

- 268545057 has 8 divisors, whose sum is
**276901984** - The reverse of 268545057 is
**750545862** - Previous prime number is
**1723**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 42
- Digital Root 6

Name | one billion six hundred twenty-six million one hundred seventy-seven thousand ninety-three |
---|

- 1626177093 has 8 divisors, whose sum is
**2169694368** - The reverse of 1626177093 is
**3907716261** - Previous prime number is
**1493**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | one billion nine hundred sixty-six million one hundred ninety-nine thousand five hundred thirty-nine |
---|

- 1966199539 has 4 divisors, whose sum is
**1979220880** - The reverse of 1966199539 is
**9359916691** - Previous prime number is
**151**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 58
- Digital Root 4