Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

Add <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>=</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>7</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Move the negative in front of the fraction.

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>C</mi></mstyle></math> from inside the cosine.

Evaluate <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mn>124.84990457</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Do you know how to Solve for C in Degrees -5cos(C)-1=2cos(C)+3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred fifty-seven million four hundred thirteen thousand sixty-two |
---|

- 1357413062 has 8 divisors, whose sum is
**2036423592** - The reverse of 1357413062 is
**2603147531** - Previous prime number is
**94121**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 32
- Digital Root 5

Name | five hundred forty-two million five hundred thirty-one thousand seventeen |
---|

- 542531017 has 4 divisors, whose sum is
**620035456** - The reverse of 542531017 is
**710135245** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 28
- Digital Root 1

Name | nine hundred eighty-one million six hundred twenty-one thousand seven hundred ninety-two |
---|

- 981621792 has 128 divisors, whose sum is
**8282436300** - The reverse of 981621792 is
**297126189** - Previous prime number is
**9**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9