Add <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> to both sides of the equation.

Add <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> from both sides of the equation.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Move the negative in front of the fraction.

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosine.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>150</mn></mstyle></math> .

The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mn>150</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Do you know how to Solve for x in Degrees cos(x)+ square root of 3=-cos(x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred thirty-eight million eighty thousand eight hundred forty-five |
---|

- 738080845 has 4 divisors, whose sum is
**885697020** - The reverse of 738080845 is
**548080837** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 43
- Digital Root 7

Name | one billion seven hundred thirty-seven million two hundred fifty-three thousand four hundred sixteen |
---|

- 1737253416 has 64 divisors, whose sum is
**5902269120** - The reverse of 1737253416 is
**6143527371** - Previous prime number is
**761**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion seven hundred fifty-one million five hundred ninety-one thousand nine hundred eighty-nine |
---|

- 1751591989 has 8 divisors, whose sum is
**2006717120** - The reverse of 1751591989 is
**9891951571** - Previous prime number is
**409**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 55
- Digital Root 1