To find the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>3</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>3</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math>

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mstyle></math> to distribute the exponent.

Apply the product rule to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mstyle></math> to distribute the exponent.

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>7</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mn>3</mn><msqrt><mn>5</mn></msqrt></mstyle></math> .

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Simplify the expression.

Raise <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Combine the numerators over the common denominator.

Add <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>49</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>49</mn></mstyle></math> .

Any root of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Approximate the result.

Do you know how to Find the Secant Given the Point (-2/7,(3 square root of 5)/7)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred thirty-nine million two thousand four hundred fifty-one |
---|

- 2139002451 has 16 divisors, whose sum is
**3170169120** - The reverse of 2139002451 is
**1542009312** - Previous prime number is
**2713**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 27
- Digital Root 9

Name | six hundred forty-nine million four hundred thirty-two thousand nine hundred ninety-five |
---|

- 649432995 has 8 divisors, whose sum is
**1039092816** - The reverse of 649432995 is
**599234946** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | one billion two hundred seventy-five million six hundred fifty-seven thousand two hundred sixty-one |
---|

- 1275657261 has 8 divisors, whose sum is
**1724176320** - The reverse of 1275657261 is
**1627565721** - Previous prime number is
**73**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6