Add <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to both sides of the equation.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>cot</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Take the inverse cotangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the cotangent.

Evaluate <math><mstyle displaystyle="true"><mi>arccot</mi><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The cotangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the fourth quadrant.

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>33.69006752</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for θ in Degrees 2cot(theta)-3=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred fifty-six million one hundred eighty-three thousand two hundred thirteen |
---|

- 956183213 has 8 divisors, whose sum is
**963456000** - The reverse of 956183213 is
**312381659** - Previous prime number is
**1543**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 38
- Digital Root 2

Name | one billion one hundred seventy-five million two hundred thirty-six thousand six hundred eighty-nine |
---|

- 1175236689 has 4 divisors, whose sum is
**1210849956** - The reverse of 1175236689 is
**9866325711** - Previous prime number is
**33**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion nine hundred twenty-three million six hundred eleven thousand three hundred sixty-eight |
---|

- 1923611368 has 32 divisors, whose sum is
**7419644064** - The reverse of 1923611368 is
**8631163291** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 40
- Digital Root 4