Start on the left side.

Apply the distributive property.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mn>1</mn><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Apply pythagorean identity.

Cancel the common factor of <math><mstyle displaystyle="true"><msup><mrow><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Because the two sides have been shown to be equivalent, the equation is an identity.

Do you know how to Verify the Identity ((1+cos(A))(1-cos(A)))/(sin(A))=sin(A)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seventy-four million eight hundred ten thousand eight hundred twenty-two |
---|

- 1074810822 has 32 divisors, whose sum is
**2278098432** - The reverse of 1074810822 is
**2280184701** - Previous prime number is
**1303**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | one billion three hundred ninety-one million three hundred fifty-five thousand three hundred thirty-three |
---|

- 1391355333 has 8 divisors, whose sum is
**2061267200** - The reverse of 1391355333 is
**3335531931** - Previous prime number is
**9**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 36
- Digital Root 9

Name | one billion seventy-four million nine hundred seventy-seven thousand nine hundred eighteen |
---|

- 1074977918 has 8 divisors, whose sum is
**1842819312** - The reverse of 1074977918 is
**8197794701** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 53
- Digital Root 8