To find the <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math>

Simplify the expression.

Apply the product rule to <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Simplify the expression.

One to any power is one.

Add <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Divide <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Find the Cosecant Given the Point (- square root of 3,1)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred seventy-seven million one hundred fifty-three thousand four hundred eighty-four |
---|

- 977153484 has 32 divisors, whose sum is
**2939639040** - The reverse of 977153484 is
**484351779** - Previous prime number is
**359**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 48
- Digital Root 3

Name | two hundred eighty-eight million eight hundred twenty-eight thousand six hundred seventy-one |
---|

- 288828671 has 16 divisors, whose sum is
**307964160** - The reverse of 288828671 is
**176828882** - Previous prime number is
**227**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 50
- Digital Root 5

Name | two billion one hundred thirty-eight million five hundred nineteen thousand three hundred |
---|

- 2138519300 has 32 divisors, whose sum is
**5221711872** - The reverse of 2138519300 is
**0039158312** - Previous prime number is
**23**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 32
- Digital Root 5