Subtract <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>10</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>9</mn><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Move the negative in front of the fraction.

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>C</mi></mstyle></math> from inside the cosine.

Evaluate <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mn>102.8395884</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Do you know how to Solve for C in Degrees 10cos(C)+1=cos(C)-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred seventeen million eight hundred fifty-one thousand seven hundred seventy-nine |
---|

- 2117851779 has 8 divisors, whose sum is
**2824495120** - The reverse of 2117851779 is
**9771587112** - Previous prime number is
**4177**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | two hundred fifty-five million nine hundred twenty-five thousand three hundred forty-five |
---|

- 255925345 has 8 divisors, whose sum is
**273540960** - The reverse of 255925345 is
**543529552** - Previous prime number is
**19**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | one billion six hundred sixty-two million eight hundred sixty-one thousand seven hundred seventy-four |
---|

- 1662861774 has 32 divisors, whose sum is
**3017710080** - The reverse of 1662861774 is
**4771682661** - Previous prime number is
**23**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3