To find the <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>5</mn></msqrt><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>5</mn></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><mn>5</mn></msqrt><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math>

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Simplify the expression.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Approximate the result.

Do you know how to Find the Cosecant Given the Point ( square root of 5,2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seven hundred ninety-two million eight hundred twenty-three thousand nine hundred forty-two |
---|

- 1792823942 has 32 divisors, whose sum is
**3313676352** - The reverse of 1792823942 is
**2493282971** - Previous prime number is
**937**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | nine hundred seventy-five million seven hundred thirteen thousand four hundred nine |
---|

- 975713409 has 8 divisors, whose sum is
**986380000** - The reverse of 975713409 is
**904317579** - Previous prime number is
**6619**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | five hundred seventy-six million two hundred two thousand four hundred eighty-five |
---|

- 576202485 has 8 divisors, whose sum is
**626213376** - The reverse of 576202485 is
**584202675** - Previous prime number is
**53**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3