Convert from rectangular coordinates <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mstyle></math> to polar coordinates <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> using the conversion formulas.

Replace <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> with the actual values.

Raising <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> to any positive power yields <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mstyle></math> to distribute the exponent.

Apply the product rule to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mn>7</mn><mi>π</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>6</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>49</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>36</mn></mrow></mfrac></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>49</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>36</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>49</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><msqrt><mn>36</mn></msqrt></mrow></mfrac></mstyle></math> .

Simplify the numerator.

Rewrite <math><mstyle displaystyle="true"><mn>49</mn><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mn>7</mn><mi>π</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>6</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Replace <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> with the actual values.

The inverse tangent of Undefined is <math><mstyle displaystyle="true"><mi>θ</mi><mo>=</mo><mn>270</mn><mi>°</mi></mstyle></math> .

This is the result of the conversion to polar coordinates in <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> form.

Do you know how to Convert to Polar (0,-(7pi)/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.