Use the conversion formulas to convert from polar coordinates to rectangular coordinates.

Substitute in the known values of <math><mstyle displaystyle="true"><mi>r</mi><mo>=</mo><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> into the formulas.

Add full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Add full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The rectangular representation of the polar point <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> .

Do you know how to Convert to Rectangular Coordinates (0,-(7pi)/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred eighty-eight million eight hundred ninety-five thousand three hundred fifty-eight |
---|

- 1888895358 has 32 divisors, whose sum is
**5756633856** - The reverse of 1888895358 is
**8535988881** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 63
- Digital Root 9

Name | four hundred thirty-six million eight hundred thirty-seven thousand one hundred forty-four |
---|

- 436837144 has 16 divisors, whose sum is
**1474325388** - The reverse of 436837144 is
**441738634** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | one billion six hundred eighty-six million one hundred sixty thousand six hundred seventy-three |
---|

- 1686160673 has 4 divisors, whose sum is
**1722036480** - The reverse of 1686160673 is
**3760616861** - Previous prime number is
**47**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8