Use the conversion formulas to convert from polar coordinates to rectangular coordinates.

Substitute in the known values of <math><mstyle displaystyle="true"><mi>r</mi><mo>=</mo><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>θ</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> into the formulas.

Add full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Add full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The rectangular representation of the polar point <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mo>-</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> .

Do you know how to Convert to Rectangular Coordinates (0,-(7pi)/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.