Subtract <math><mstyle displaystyle="true"><mn>4</mn><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>4</mn><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>11</mn><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>7</mn><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>θ</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for θ in Degrees 11sin(theta)+2=4sin(theta)+2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.