<math><mstyle displaystyle="true"><mtable class="shapeTable" columnlines="solid" rowlines="solid"><mtr><mtd><mi>Side</mi></mtd><mtd><mi>Angle</mi></mtd></mtr><mtr><mtd><mtable><mtr><mtd><mrow><mi>b</mi><mo>=</mo></mrow></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mrow><mi>c</mi><mo>=</mo></mrow></mtd><mtd></mtd></mtr><mtr><mtd><mrow><mi>a</mi><mo>=</mo></mrow></mtd><mtd></mtd></mtr></mtable></mtd><mtd><mtable><mtr><mtd><mrow><mi>A</mi><mo>=</mo></mrow></mtd><mtd><mn>30</mn></mtd></mtr><mtr><mtd><mrow><mi>B</mi><mo>=</mo></mrow></mtd><mtd><mn>60</mn></mtd></mtr><mtr><mtd><mrow><mi>C</mi><mo>=</mo></mrow></mtd><mtd><mn>90</mn></mtd></mtr></mtable></mtd></mtr></mtable></mstyle></math>

The sine of an angle is equal to the ratio of the opposite side to the hypotenuse.

Substitute the name of each side into the definition of the sine function.

Set up the equation to solve for the hypotenuse, in this case <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Substitute the values of each variable into the formula for sine.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Length of c tri{6}{30}{}{60}{}{90}? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred two million eight hundred seventy-one thousand two hundred thirty-seven |
---|

- 2102871237 has 8 divisors, whose sum is
**2807080704** - The reverse of 2102871237 is
**7321782012** - Previous prime number is
**863**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | one billion five hundred seventeen million one hundred fifty-nine thousand six hundred four |
---|

- 1517159604 has 64 divisors, whose sum is
**4593438720** - The reverse of 1517159604 is
**4069517151** - Previous prime number is
**283**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion one hundred forty-two million three hundred sixty-seven thousand eight hundred seventy-two |
---|

- 1142367872 has 256 divisors, whose sum is
**19518428250** - The reverse of 1142367872 is
**2787632411** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5