Replace <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> with an equivalent expression <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mi>θ</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> using the fundamental identities.

Use the difference formula for sine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>-</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>-</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Remove parentheses.

Simplify each term.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Convert from <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas csc(pi/2-theta)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred fifty-nine million nine hundred fifty-three thousand four hundred twenty-four |
---|

- 1359953424 has 256 divisors, whose sum is
**8476488000** - The reverse of 1359953424 is
**4243599531** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion two hundred seventy-nine million three hundred forty-three thousand one hundred twenty-one |
---|

- 1279343121 has 16 divisors, whose sum is
**1362586368** - The reverse of 1279343121 is
**1213439721** - Previous prime number is
**103**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | one billion eight hundred twelve million nine hundred eighty-six thousand four hundred eight |
---|

- 1812986408 has 64 divisors, whose sum is
**6424142400** - The reverse of 1812986408 is
**8046892181** - Previous prime number is
**163**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2