Use the difference formula for tangent to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>-</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Remove parentheses.

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas tan(15pi-2t)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred sixty-eight million two hundred eighty-three thousand two hundred ninety-two |
---|

- 1268283292 has 16 divisors, whose sum is
**2860141680** - The reverse of 1268283292 is
**2923828621** - Previous prime number is
**439**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | nine hundred eleven million sixteen thousand two hundred fifty-two |
---|

- 911016252 has 64 divisors, whose sum is
**3645578880** - The reverse of 911016252 is
**252610119** - Previous prime number is
**3733**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 27
- Digital Root 9

Name | four hundred twenty-nine million six hundred sixty-three thousand nine hundred seventy-one |
---|

- 429663971 has 8 divisors, whose sum is
**484887600** - The reverse of 429663971 is
**179366924** - Previous prime number is
**29**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 47
- Digital Root 2