Use the difference formula for tangent to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>-</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Remove parentheses.

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>15</mn><mi>π</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Subtract full rotations of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> until the angle is greater than or equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mn>2</mn><mi>t</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas tan(15pi-2t)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred eighty-nine million forty-four thousand five hundred two |
---|

- 1389044502 has 8 divisors, whose sum is
**2315074200** - The reverse of 1389044502 is
**2054409831** - Previous prime number is
**9**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 36
- Digital Root 9

Name | six million eighty-six thousand one hundred ninety |
---|

- 6086190 has 32 divisors, whose sum is
**15935616** - The reverse of 6086190 is
**0916806** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 7
- Sum of Digits 30
- Digital Root 3

Name | one billion nine hundred twenty-six million two hundred eighty-one thousand four hundred twenty-seven |
---|

- 1926281427 has 16 divisors, whose sum is
**3089775360** - The reverse of 1926281427 is
**7241826291** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6