Subtract <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> from both sides of the equation.

Move <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> .

Reorder <math><mstyle displaystyle="true"><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>-</mo><mn>2</mn><mrow><mo>(</mo><mo>-</mo><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Apply pythagorean identity.

Subtract <math><mstyle displaystyle="true"><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Simplify <math><mstyle displaystyle="true"><mo>±</mo><msqrt><mn>0</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Plus or minus <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosine.

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>90</mn></mstyle></math> .

The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> to find the solution in the fourth quadrant.

Subtract <math><mstyle displaystyle="true"><mn>90</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>360</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for x in Degrees 2sin(x)^2-cos(x)^2=2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred seventy million thirty-nine thousand nine hundred ten |
---|

- 1570039910 has 8 divisors, whose sum is
**2826071856** - The reverse of 1570039910 is
**0199300751** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | two billion fifty-two million one hundred twenty-three thousand one hundred forty-six |
---|

- 2052123146 has 4 divisors, whose sum is
**3078184722** - The reverse of 2052123146 is
**6413212502** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 26
- Digital Root 8

Name | one billion seven hundred forty-seven million two hundred seventy-five thousand five hundred thirty-seven |
---|

- 1747275537 has 16 divisors, whose sum is
**2748403712** - The reverse of 1747275537 is
**7355727471** - Previous prime number is
**31**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3