<math><mstyle displaystyle="true"><mtable class="shapeTable" columnlines="solid" rowlines="solid"><mtr><mtd><mi>Side</mi></mtd><mtd><mi>Angle</mi></mtd></mtr><mtr><mtd><mtable><mtr><mtd><mrow><mi>b</mi><mo>=</mo></mrow></mtd><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mrow><mi>c</mi><mo>=</mo></mrow></mtd><mtd><mn>5</mn></mtd></mtr><mtr><mtd><mrow><mi>a</mi><mo>=</mo></mrow></mtd><mtd><mn>3</mn></mtd></mtr></mtable></mtd><mtd><mtable><mtr><mtd><mrow><mi>A</mi><mo>=</mo></mrow></mtd><mtd></mtd></mtr><mtr><mtd><mrow><mi>B</mi><mo>=</mo></mrow></mtd><mtd></mtd></mtr><mtr><mtd><mrow><mi>C</mi><mo>=</mo></mrow></mtd><mtd></mtd></mtr></mtable></mtd></mtr></mtable></mstyle></math>

Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.

Replace the known values in the equation.

Raise <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>25</mn><mo>-</mo><msup><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math>

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>25</mn><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>16</mn></msqrt></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>25</mn><mo>-</mo><mn>16</mn></msqrt></mstyle></math>

Subtract <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><mn>9</mn></msqrt></mstyle></math>

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Opposite <math><mstyle displaystyle="true"><mo>=</mo><msqrt><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math>

Pull terms out from under the radical, assuming positive real numbers.

Opposite <math><mstyle displaystyle="true"><mo>=</mo><mn>3</mn></mstyle></math>

Opposite <math><mstyle displaystyle="true"><mo>=</mo><mn>3</mn></mstyle></math>

Use the definition of cosine to find the value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of sine to find the value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of tangent to find the value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of cotangent to find the value of <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of secant to find the value of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

Use the definition of cosecant to find the value of <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mstyle></math> .

Substitute in the known values.

This is the solution to each trig value.

Do you know how to Find the Trig Values Using Angle A tri{4}{}{5}{}{3}{}? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred sixty-one million five hundred twenty-four thousand nine hundred ninety-three |
---|

- 1561524993 has 32 divisors, whose sum is
**1935648000** - The reverse of 1561524993 is
**3994251651** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion fifty-nine million six hundred sixteen thousand eight hundred eighty-four |
---|

- 1059616884 has 16 divisors, whose sum is
**3178850688** - The reverse of 1059616884 is
**4886169501** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | eight hundred forty million sixty-two thousand five hundred ninety-two |
---|

- 840062592 has 2048 divisors, whose sum is
**25577192448** - The reverse of 840062592 is
**295260048** - Previous prime number is
**751**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9