Factor <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>5</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>9</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>5</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>9</mn><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>tan</mi><mrow><mn>4</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>⋅</mo><mo>-</mo><mn>9</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>4</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Factor.

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>3</mn></mstyle></math> .

Remove unnecessary parentheses.

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Solve <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

Set <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Solve <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>=</mo><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from both sides of the equation.

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Simplify <math><mstyle displaystyle="true"><mo>±</mo><msqrt><mo>-</mo><mn>3</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>3</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set up each of the solutions to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> in <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The inverse tangent of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is undefined.

Undefined

Undefined

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> in <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the tangent.

The inverse tangent of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is undefined.

Undefined

Undefined

List all of the solutions.

No solution

No solution

No solution

Set <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>3</mn></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Solve <math><mstyle displaystyle="true"><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>3</mn><mo>=</mo><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to both sides of the equation.

Take the square root of both sides of the equation to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set up each of the solutions to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> in <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mn>3</mn></msqrt></mstyle></math> .

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Simplify <math><mstyle displaystyle="true"><mi>π</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine fractions.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>3</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

Solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> in <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> .

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Simplify the expression to find the second solution.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>-</mo><mi>π</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> is positive and coterminal with <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>-</mo><mi>π</mi></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to every negative angle to get positive angles.

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine fractions.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>3</mn><mi>π</mi></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

List all of the solutions.

Consolidate the solutions.

Consolidate <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

The final solution is all the values that make <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>tan</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>3</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

Consolidate the answers.

Do you know how to Solve for x in Radians tan(x)^5-9tan(x)=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion eighty-six million nine hundred eighty thousand six hundred nineteen |
---|

- 2086980619 has 4 divisors, whose sum is
**2135515096** - The reverse of 2086980619 is
**9160896802** - Previous prime number is
**43**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 49
- Digital Root 4

Name | one billion seven hundred forty-three million three hundred ninety-nine thousand six hundred eighty |
---|

- 1743399680 has 2048 divisors, whose sum is
**58492522224** - The reverse of 1743399680 is
**0869933471** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | one hundred six million four hundred ninety-seven thousand sixty-two |
---|

- 106497062 has 16 divisors, whose sum is
**182891520** - The reverse of 106497062 is
**260794601** - Previous prime number is
**587**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 35
- Digital Root 8