Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , to find a reference angle. Next, add this reference angle to <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> is positive, less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , and coterminal with <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>π</mi></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>x</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>x</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>3</mn><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> radians in both directions.

Do you know how to Solve for x in Radians sin(3x)=-( square root of 3)/2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | five hundred ninety-nine million four hundred eight thousand two hundred twenty |
---|

- 599408220 has 16 divisors, whose sum is
**1438579872** - The reverse of 599408220 is
**022804995** - Previous prime number is
**15**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | four hundred fifty-five million eight hundred seven thousand nineteen |
---|

- 455807019 has 4 divisors, whose sum is
**607742696** - The reverse of 455807019 is
**910708554** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | seventy-three million one hundred thousand two hundred thirty-four |
---|

- 73100234 has 16 divisors, whose sum is
**112860000** - The reverse of 73100234 is
**43200137** - Previous prime number is
**37**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 20
- Digital Root 2