# Solve for x in Radians sin(3x)=-( square root of 3)/2

Solve for x in Radians sin(3x)=-( square root of 3)/2
Take the inverse sine of both sides of the equation to extract from inside the sine.
Simplify the right side.
The exact value of is .
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
Simplify the right side.
Multiply the numerator by the reciprocal of the denominator.
Multiply .
Multiply by .
Multiply by .
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Simplify the expression to find the second solution.
Subtract from .
The resulting angle of is positive, less than , and coterminal with .
Divide each term in by and simplify.
Divide each term in by .
Simplify the left side.
Cancel the common factor of .
Cancel the common factor.
Divide by .
Simplify the right side.
Multiply the numerator by the reciprocal of the denominator.
Multiply .
Multiply by .
Multiply by .
Find the period of .
The period of the function can be calculated using .
Replace with in the formula for period.
The absolute value is the distance between a number and zero. The distance between and is .
Add to every negative angle to get positive angles.
Add to to find the positive angle.
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Multiply by .
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Multiply by .
Subtract from .
List the new angles.
The period of the function is so values will repeat every radians in both directions.
, for any integer
Do you know how to Solve for x in Radians sin(3x)=-( square root of 3)/2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.