Split <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> into two angles where the values of the six trigonometric functions are known.

Apply the difference of angles identity.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply the numerator and denominator of the complex fraction by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mrow><mrow><mn>1</mn><mo>+</mo><mn>1</mn><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine.

Apply the distributive property.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> into the numerator.

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Expand the denominator using the FOIL method.

Simplify.

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify and combine like terms.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>3</mn></msqrt><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Add <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn><msqrt><mn>3</mn></msqrt></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><msqrt><mn>3</mn></msqrt></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>12</mn><mo>-</mo><mn>6</mn><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>+</mo><mn>6</mn><mrow><mo>(</mo><mo>-</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Divide <math><mstyle displaystyle="true"><mn>2</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Exact Value tan(pi/12)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | five hundred sixty-seven million one hundred fifty-seven thousand nine hundred thirteen |
---|

- 567157913 has 4 divisors, whose sum is
**648180480** - The reverse of 567157913 is
**319751765** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | one billion six hundred thirty-three million one hundred thirty-six thousand six hundred ninety |
---|

- 1633136690 has 8 divisors, whose sum is
**2939646060** - The reverse of 1633136690 is
**0966313361** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | two hundred seven million seven hundred ninety-six thousand four hundred thirty-two |
---|

- 207796432 has 64 divisors, whose sum is
**1056581820** - The reverse of 207796432 is
**234697702** - Previous prime number is
**229**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 40
- Digital Root 4