Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the third quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Exact Value sec((7pi)/6)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred eighty-nine million nine thousand six hundred thirty-six |
---|

- 389009636 has 16 divisors, whose sum is
**882164736** - The reverse of 389009636 is
**636900983** - Previous prime number is
**127**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | one billion eight hundred ninety-two million eight hundred twenty-nine thousand nine hundred thirty-one |
---|

- 1892829931 has 4 divisors, whose sum is
**1921081192** - The reverse of 1892829931 is
**1399282981** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 52
- Digital Root 7

Name | five hundred forty-seven million four hundred thirty-three thousand seven hundred ninety-eight |
---|

- 547433798 has 4 divisors, whose sum is
**821150700** - The reverse of 547433798 is
**897334745** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 50
- Digital Root 5