Split <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> into two angles where the values of the six trigonometric functions are known.

Apply the sum of angles identity.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply the numerator and denominator of the complex fraction by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mn>1</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine.

Apply the distributive property.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> into the numerator.

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>3</mn></mrow><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt><mo>+</mo><mn>3</mn></mrow><mrow><mn>3</mn><mo>-</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow></mfrac></mstyle></math> .

Expand the denominator using the FOIL method.

Simplify.

Simplify the numerator.

Reorder terms.

Raise <math><mstyle displaystyle="true"><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow><mrow><mo>(</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify and combine like terms.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Add <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>3</mn><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn><msqrt><mn>3</mn></msqrt></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>12</mn><mo>+</mo><mn>6</mn><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>+</mo><mn>6</mn><mrow><mo>(</mo><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Divide <math><mstyle displaystyle="true"><mn>2</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Exact Value tan((5pi)/12)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred thirty-seven million seven hundred forty-four thousand three hundred ninety-eight |
---|

- 1237744398 has 32 divisors, whose sum is
**2132036640** - The reverse of 1237744398 is
**8934477321** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion six hundred twenty-two million six hundred ninety-three thousand thirty-one |
---|

- 1622693031 has 4 divisors, whose sum is
**2163590712** - The reverse of 1622693031 is
**1303962261** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | seventy million three hundred eight thousand seven hundred nineteen |
---|

- 70308719 has 16 divisors, whose sum is
**81158112** - The reverse of 70308719 is
**91780307** - Previous prime number is
**83**

- Is Prime? no
- Number parity odd
- Number length 8
- Sum of Digits 35
- Digital Root 8