Since the angle <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> is in the second quadrant, subtract <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

To write <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Combine fractions.

Combine <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>5</mn><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Do you know how to Find the Reference Angle (5pi)/6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.