Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , to find a reference angle. Next, add this reference angle to <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>⋅</mo><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi><mo>⋅</mo><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Divide each term by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>3</mn><mi>x</mi><mo>=</mo><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mi>π</mi></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>3</mn><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> radians in both directions.

Consolidate the answers.

Do you know how to Solve for ? sin(3x)=-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred eighty million seven hundred ninety-three thousand three hundred twenty-seven |
---|

- 1280793327 has 16 divisors, whose sum is
**1866011520** - The reverse of 1280793327 is
**7233970821** - Previous prime number is
**619**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | two hundred sixty-nine million eight hundred thirty-two thousand three hundred ten |
---|

- 269832310 has 32 divisors, whose sum is
**542184192** - The reverse of 269832310 is
**013238962** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 34
- Digital Root 7

Name | nine hundred two million three hundred fifty-two thousand six |
---|

- 902352006 has 32 divisors, whose sum is
**2431083648** - The reverse of 902352006 is
**600253209** - Previous prime number is
**97**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 27
- Digital Root 9