Start on the left side.

Write <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in sines and cosines using the quotient identity.

Write <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> in sines and cosines using the quotient identity.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Combine.

Reorder the factors of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Combine the numerators over the common denominator.

Simplify each term.

Apply pythagorean identity.

Now consider the right side of the equation.

Apply the reciprocal identity to <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Apply the reciprocal identity to <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Because the two sides have been shown to be equivalent, the equation is an identity.

Do you know how to Verify the Identity tan(x)+cot(x)=sec(x)csc(x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred eighty-three million nine hundred sixty-one thousand nine hundred thirty-three |
---|

- 983961933 has 16 divisors, whose sum is
**1337407680** - The reverse of 983961933 is
**339169389** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | nine hundred sixty-nine million five hundred ninety-eight thousand three hundred twelve |
---|

- 969598312 has 32 divisors, whose sum is
**3273008148** - The reverse of 969598312 is
**213895969** - Previous prime number is
**8537**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 52
- Digital Root 7

Name | one billion two hundred forty-three million six hundred eighty thousand four hundred four |
---|

- 1243680404 has 16 divisors, whose sum is
**2851079148** - The reverse of 1243680404 is
**4040863421** - Previous prime number is
**53**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 32
- Digital Root 5