First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, <math><mstyle displaystyle="true"><mfrac><mrow><mn>11</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> can be split into <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Use the sum formula for sine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mrow><mo>(</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mo>(</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mo>(</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the numerators over the common denominator.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Expand Using Sum/Difference Formulas sin((11pi)/12)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred fifty-eight million one hundred twenty thousand six hundred thirty-six |
---|

- 1958120636 has 8 divisors, whose sum is
**4405771440** - The reverse of 1958120636 is
**6360218591** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | two billion one hundred thirty-nine million five hundred sixty-nine thousand seven hundred eighty-four |
---|

- 2139569784 has 128 divisors, whose sum is
**9213523200** - The reverse of 2139569784 is
**4879659312** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | one billion seven hundred eighty-four million eight hundred ten thousand six hundred twenty |
---|

- 1784810620 has 64 divisors, whose sum is
**5109811776** - The reverse of 1784810620 is
**0260184871** - Previous prime number is
**773**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 37
- Digital Root 1