Take the inverse cotangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cotangent.

The exact value of <math><mstyle displaystyle="true"><mi>arccot</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

The cotangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cot</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

Consolidate the answers.

Do you know how to Solve for ? cot(x)=1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred twenty-five million six hundred forty-two thousand eight hundred eighty |
---|

- 425642880 has 512 divisors, whose sum is
**7310231208** - The reverse of 425642880 is
**088246524** - Previous prime number is
**195**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | one billion twelve million five hundred seventy-seven thousand seven hundred forty-eight |
---|

- 1012577748 has 128 divisors, whose sum is
**2961826560** - The reverse of 1012577748 is
**8477752101** - Previous prime number is
**139**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | one billion nine hundred six million nine hundred fifty-one thousand eight hundred eighty-five |
---|

- 1906951885 has 4 divisors, whose sum is
**2288342268** - The reverse of 1906951885 is
**5881596091** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 52
- Digital Root 7