Take the inverse cosecant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosecant.

The exact value of <math><mstyle displaystyle="true"><mi>arccsc</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

The cosecant function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>csc</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Do you know how to Solve for x csc(x)=2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred seventy-six million nine hundred eighty-seven thousand nine hundred eleven |
---|

- 1576987911 has 16 divisors, whose sum is
**2140648704** - The reverse of 1576987911 is
**1197896751** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | two hundred thirty million four hundred ninety-nine thousand eight hundred ninety-eight |
---|

- 230499898 has 8 divisors, whose sum is
**346876992** - The reverse of 230499898 is
**898994032** - Previous prime number is
**307**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 52
- Digital Root 7

Name | one billion three hundred forty-six million four hundred thirty-nine thousand forty-four |
---|

- 1346439044 has 32 divisors, whose sum is
**3174374016** - The reverse of 1346439044 is
**4409346431** - Previous prime number is
**241**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2