Draw a triangle in the plane with vertices <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and the origin. Then <math><mstyle displaystyle="true"><msup><mi>sin</mi><mn>-1</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> is the angle between the positive x-axis and the ray beginning at the origin and passing through <math><mstyle displaystyle="true"><mrow><mo>(</mo><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> . Therefore, <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><msup><mi>sin</mi><mn>-1</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> .

Divide <math><mstyle displaystyle="true"><msqrt><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mi>x</mi></mstyle></math> .

Do you know how to Simplify cos(arcsin(x))? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred eighty-two million six hundred forty thousand one hundred fifty-three |
---|

- 682640153 has 8 divisors, whose sum is
**746124288** - The reverse of 682640153 is
**351046286** - Previous prime number is
**67**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 35
- Digital Root 8

Name | one billion nine hundred forty-four million four hundred sixty-six thousand seven hundred eighty-four |
---|

- 1944466784 has 128 divisors, whose sum is
**15901628400** - The reverse of 1944466784 is
**4876644491** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 53
- Digital Root 8

Name | three hundred thirty-two million two hundred thirty-three thousand eight hundred forty-six |
---|

- 332233846 has 8 divisors, whose sum is
**569543760** - The reverse of 332233846 is
**648332233** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 34
- Digital Root 7