Apply the tangent double-angle identity.

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mi>tan</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Do you know how to Expand tan(2x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred seventy-three million eight hundred seventy-seven thousand two hundred |
---|

- 173877200 has 256 divisors, whose sum is
**1448668800** - The reverse of 173877200 is
**002778371** - Previous prime number is
**5**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 35
- Digital Root 8

Name | three hundred seventy million five hundred eighty-two thousand two hundred sixty-one |
---|

- 370582261 has 4 divisors, whose sum is
**423522592** - The reverse of 370582261 is
**162285073** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 34
- Digital Root 7

Name | four hundred sixty-four million six hundred eight thousand five hundred forty-six |
---|

- 464608546 has 4 divisors, whose sum is
**696912822** - The reverse of 464608546 is
**645806464** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 43
- Digital Root 7