Solve for x sin(4x)-sin(2x)=0

Solve for x sin(4x)-sin(2x)=0
Factor out of .
Tap for more steps...
Factor out of .
Factor out of .
Factor out of .
Factor out of .
Factor out of .
Divide each term in by .
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
Divide by .
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Tap for more steps...
Set the first factor equal to .
Take the inverse sine of both sides of the equation to extract from inside the sine.
The exact value of is .
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Subtract from .
Find the period.
Tap for more steps...
The period of the function can be calculated using .
Replace with in the formula for period.
Solve the equation.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Divide by .
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Set the next factor equal to and solve.
Tap for more steps...
Set the next factor equal to .
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
The exact value of is .
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Simplify .
Tap for more steps...
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Combine.
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps...
Multiply by .
Subtract from .
Find the period.
Tap for more steps...
The period of the function can be calculated using .
Replace with in the formula for period.
Solve the equation.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Divide by .
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Set the next factor equal to and solve.
Tap for more steps...
Set the next factor equal to .
Replace the with based on the identity.
Simplify each term.
Tap for more steps...
Apply the distributive property.
Multiply by .
Multiply by .
Simplify by adding terms.
Tap for more steps...
Subtract from .
Subtract from .
Subtract from both sides of the equation.
Divide each term by and simplify.
Tap for more steps...
Divide each term in by .
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
Dividing two negative values results in a positive value.
Take the root of both sides of the to eliminate the exponent on the left side.
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Simplify the right side of the equation.
Tap for more steps...
Rewrite as .
Any root of is .
Simplify the denominator.
Tap for more steps...
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
First, use the positive value of the to find the first solution.
Next, use the negative value of the to find the second solution.
The complete solution is the result of both the positive and negative portions of the solution.
Set up each of the solutions to solve for .
Set up the equation to solve for .
Solve the equation for .
Tap for more steps...
Take the inverse sine of both sides of the equation to extract from inside the sine.
The exact value of is .
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Simplify .
Tap for more steps...
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Combine.
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps...
Move to the left of .
Subtract from .
Find the period.
Tap for more steps...
The period of the function can be calculated using .
Replace with in the formula for period.
Solve the equation.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Divide by .
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Set up the equation to solve for .
Solve the equation for .
Tap for more steps...
Take the inverse sine of both sides of the equation to extract from inside the sine.
The exact value of is .
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Simplify the expression to find the second solution.
Tap for more steps...
Simplify .
Tap for more steps...
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Combine.
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps...
Multiply by .
Add and .
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Combine.
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps...
Move to the left of .
Add and .
Subtract from .
The resulting angle of is positive, less than , and coterminal with .
Find the period.
Tap for more steps...
The period of the function can be calculated using .
Replace with in the formula for period.
Solve the equation.
Tap for more steps...
The absolute value is the distance between a number and zero. The distance between and is .
Divide by .
Add to every negative angle to get positive angles.
Tap for more steps...
Add to to find the positive angle.
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Combine.
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps...
Multiply by .
Subtract from .
List the new angles.
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
List all of the results found in the previous steps.
, for any integer
, for any integer
The final solution is all the values that make true.
, for any integer
Consolidate the answers.
Tap for more steps...
Consolidate and to .
, for any integer
Consolidate and to .
, for any integer
Consolidate and to .
, for any integer
Consolidate and to .
, for any integer
Consolidate and to .
, for any integer
, for any integer
Do you know how to Solve for x sin(4x)-sin(2x)=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name

Name one billion three hundred fifty-seven million eight hundred forty-two thousand three hundred ninety-seven

Interesting facts

  • 1357842397 has 4 divisors, whose sum is 1364735196
  • The reverse of 1357842397 is 7932487531
  • Previous prime number is 197

Basic properties

  • Is Prime? no
  • Number parity odd
  • Number length 10
  • Sum of Digits 49
  • Digital Root 4

Name

Name one billion one hundred twenty-eight million seventy-seven thousand six hundred eighty-two

Interesting facts

  • 1128077682 has 32 divisors, whose sum is 2319609984
  • The reverse of 1128077682 is 2867708211
  • Previous prime number is 4231

Basic properties

  • Is Prime? no
  • Number parity even
  • Number length 10
  • Sum of Digits 42
  • Digital Root 6

Name

Name one billion five hundred eighty-one million two hundred thirty-four thousand six hundred

Interesting facts

  • 1581234600 has 1024 divisors, whose sum is 12546731520
  • The reverse of 1581234600 is 0064321851
  • Previous prime number is 17

Basic properties

  • Is Prime? no
  • Number parity even
  • Number length 10
  • Sum of Digits 30
  • Digital Root 3