Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mi>cos</mi><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn><msup><mi>sin</mi><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>⋅</mo><mo>-</mo><mn>1</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Take the inverse cosine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the cosine.

The exact value of <math><mstyle displaystyle="true"><mi>arccos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Simplify <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Replace the <math><mstyle displaystyle="true"><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> based on the <math><mstyle displaystyle="true"><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mstyle></math> identity.

Simplify each term.

Apply the distributive property.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify by adding terms.

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Dividing two negative values results in a positive value.

Take the <math><mstyle displaystyle="true"><mtext class="not-bold-word">square</mtext></mstyle></math> root of both sides of the <math><mstyle displaystyle="true"><mtext class="not-bold-word">equation</mtext></mstyle></math> to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

Simplify the right side of the equation.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>1</mn></msqrt></mrow><mrow><msqrt><mn>4</mn></msqrt></mrow></mfrac></mstyle></math> .

Any root of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Set up each of the solutions to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Set up the equation to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Solve the equation for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the second quadrant.

Simplify <math><mstyle displaystyle="true"><mi>π</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Find the period.

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

Solve the equation.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Set up the equation to solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Solve the equation for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

The exact value of <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , to find a reference angle. Next, add this reference angle to <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Simplify the expression to find the second solution.

Simplify <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>+</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mi>π</mi></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>12</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

To write <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Write each expression with a common denominator of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> , by multiplying each by an appropriate factor of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Move <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>13</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mfrac><mrow><mn>19</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

The resulting angle of <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> is positive, less than <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , and coterminal with <math><mstyle displaystyle="true"><mfrac><mrow><mn>19</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Find the period.

Solve the equation.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to every negative angle to get positive angles.

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> to find the positive angle.

To write <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>6</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> .

Combine.

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>12</mn><mi>π</mi></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

List all of the results found in the previous steps.

The final solution is all the values that make <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><msup><mi>cos</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><msup><mi>sin</mi><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> true.

Consolidate <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>π</mi><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mi>π</mi><mi>n</mi></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>7</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Consolidate <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>11</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mn>2</mn><mi>π</mi><mi>n</mi></mstyle></math> to <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>+</mo><mi>π</mi><mi>n</mi></mstyle></math> .

Do you know how to Solve for x sin(4x)-sin(2x)=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.