Simplify each term.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt><mo>+</mo><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Split <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> into two angles where the values of the six trigonometric functions are known.

Apply the sum of angles identity.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Combine the numerators over the common denominator.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt><mo>+</mo><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt><mo>+</mo><msqrt><mn>6</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>6</mn></msqrt><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Split <math><mstyle displaystyle="true"><mfrac><mrow><mn>5</mn><mi>π</mi></mrow><mrow><mn>12</mn></mrow></mfrac></mstyle></math> into two angles where the values of the six trigonometric functions are known.

Apply the sum of angles identity.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>6</mn></msqrt><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>6</mn></msqrt><mo>-</mo><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Apply the distributive property.

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>2</mn></msqrt><msqrt><mn>3</mn></msqrt></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Combine the numerators over the common denominator.

Add <math><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn><msqrt><mn>2</mn></msqrt></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> from <math><mstyle displaystyle="true"><msqrt><mn>6</mn></msqrt></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>4</mn><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>4</mn><msqrt><mn>2</mn></msqrt></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Simplify sin((5pi)/12)cos(pi/3)+cos((5pi)/12)sin(pi/3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred seventy-six million four hundred ninety-five thousand one hundred twenty-eight |
---|

- 376495128 has 512 divisors, whose sum is
**2647572480** - The reverse of 376495128 is
**821594673** - Previous prime number is
**41**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9

Name | eight hundred fifty-three million two hundred thirty-eight thousand twenty-nine |
---|

- 853238029 has 16 divisors, whose sum is
**1152864000** - The reverse of 853238029 is
**920832358** - Previous prime number is
**29**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | one billion eight hundred seventy-eight million one hundred sixty-two thousand two hundred seventy-eight |
---|

- 1878162278 has 32 divisors, whose sum is
**3008223360** - The reverse of 1878162278 is
**8722618781** - Previous prime number is
**229**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5